6 Chapter 6

## 
## Formula: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2)
## 
## Parameters:
##      Estimate Std. Error t value Pr(>|t|)    
## A1      2.773      0.253   10.95    4e-16 ***
## lrc1    0.886      0.222    3.99  0.00018 ***
## A2      0.607      0.267    2.27  0.02660 *  
## lrc2   -1.092      0.409   -2.67  0.00966 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.174 on 62 degrees of freedom
## 
## Number of iterations to convergence: 0 
## Achieved convergence tolerance: 3.3e-07

## Call:
##   Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2) | Subject 
##    Data: Indometh 
## 
## Coefficients:
##       A1    lrc1      A2     lrc2
## 1 2.0293 0.57939 0.19155 -1.78778
## 4 2.1981 0.24231 0.25452 -1.60269
## 2 2.8277 0.80132 0.49892 -1.63535
## 5 3.5661 1.04077 0.29150 -1.50685
## 6 3.0022 1.08821 0.96852 -0.87314
## 3 5.4683 1.74979 1.67575 -0.41220
## 
## Degrees of freedom: 66 total; 42 residual
## Residual standard error: 0.07555

## Nonlinear mixed-effects model fit by maximum likelihood
##   Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2) 
##   Data: Indometh 
##   Log-likelihood: 54.597
##   Fixed: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1) 
##       A1     lrc1       A2     lrc2 
##  2.82754  0.77362  0.46147 -1.34410 
## 
## Random effects:
##  Formula: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1)
##  Level: Subject
##  Structure: Diagonal
##              A1    lrc1     A2       lrc2 Residual
## StdDev: 0.57141 0.15808 0.1116 8.5391e-06 0.081493
## 
## Number of Observations: 66
## Number of Groups: 6
##               Model df     AIC     BIC logLik   Test   L.Ratio
## fm1Indom.nlme     1  9 -91.193 -71.487 54.597                 
## fm2Indom.nlme     2  8 -93.185 -75.667 54.592 1 vs 2 0.0087052
##               p-value
## fm1Indom.nlme        
## fm2Indom.nlme  0.9257
## Warning in (function (model, data = sys.frame(sys.parent()),
## fixed, random, : Iteration 1, LME step: nlminb() did not converge
## (code = 1). Do increase 'msMaxIter'!
## Nonlinear mixed-effects model fit by maximum likelihood
##   Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2) 
##   Data: Indometh 
##   Log-likelihood: 58.473
##   Fixed: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1) 
##       A1     lrc1       A2     lrc2 
##  2.81484  0.82928  0.56134 -1.14069 
## 
## Random effects:
##  Formula: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1)
##  Level: Subject
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev   Corr       
## A1       0.690446 A1    lrc1 
## lrc1     0.179038 0.932      
## A2       0.153714 0.471 0.118
## Residual 0.078071            
## 
## Number of Observations: 66
## Number of Groups: 6
##               Model df     AIC    BIC logLik   Test L.Ratio
## fm3Indom.nlme     1 11 -94.946 -70.86 58.473               
## fm4Indom.nlme     2  9 -98.157 -78.45 58.078 1 vs 2 0.78937
##               p-value
## fm3Indom.nlme        
## fm4Indom.nlme  0.6739
##               Model df     AIC     BIC logLik   Test L.Ratio
## fm2Indom.nlme     1  8 -93.185 -75.667 54.592               
## fm4Indom.nlme     2  9 -98.157 -78.450 58.078 1 vs 2  6.9721
##               p-value
## fm2Indom.nlme        
## fm4Indom.nlme  0.0083

## Nonlinear mixed-effects model fit by maximum likelihood
##   Model: conc ~ SSbiexp(time, A1, lrc1, A2, lrc2) 
##  Data: Indometh 
##       AIC    BIC logLik
##   -98.157 -78.45 58.078
## 
## Random effects:
##  Composite Structure: Blocked
## 
##  Block 1: A1, lrc1
##  Formula: list(A1 ~ 1, lrc1 ~ 1)
##  Level: Subject
##  Structure: General positive-definite
##      StdDev  Corr
## A1   0.71962 A1  
## lrc1 0.14867 1   
## 
##  Block 2: A2
##  Formula: A2 ~ 1 | Subject
##              A2 Residual
## StdDev: 0.21294   0.0782
## 
## Fixed effects: list(A1 ~ 1, lrc1 ~ 1, A2 ~ 1, lrc2 ~ 1) 
##         Value Std.Error DF t-value p-value
## A1    2.78306   0.32708 57  8.5087       0
## lrc1  0.89791   0.11068 57  8.1123       0
## A2    0.65779   0.14280 57  4.6063       0
## lrc2 -1.00037   0.14997 57 -6.6704       0
##  Correlation: 
##      A1     lrc1   A2    
## lrc1  0.602              
## A2   -0.058  0.556       
## lrc2 -0.109  0.570  0.702
## 
## Standardized Within-Group Residuals:
##      Min       Q1      Med       Q3      Max 
## -3.45876 -0.43726  0.10965  0.50423  3.05716 
## 
## Number of Observations: 66
## Number of Groups: 6
## Grouped Data: weight ~ Time | Plot
##     Plot Variety Year Time weight
## 1 1988F1       F 1988   14  0.106
## 2 1988F1       F 1988   21  0.261
## 3 1988F1       F 1988   28  0.666
## 4 1988F1       F 1988   35  2.110
## 5 1988F1       F 1988   42  3.560
## 6 1988F1       F 1988   49  6.230

## Warning: 2 errors caught in nls(y ~ 1/(1 + exp((xmid - x)/scal)), data = xy, start = list(xmid = aux[[1L]], 
##     scal = aux[[2L]]), algorithm = "plinear").  The error messages and their frequencies are
## 
## step factor 0.000488281 reduced below 'minFactor' of 0.000976562 
##                                                                1 
##                           지정된 최대 반복수 50를 초과하였습니다 
##                                                                1
## Call:
##   Model: weight ~ SSlogis(Time, Asym, xmid, scal) | Plot 
##    Data: Soybean 
## 
## Coefficients:
##            Asym    xmid    scal
## 1988F4  15.1516  52.834  5.1768
## 1988F2  19.7454  56.575  8.4066
## 1988F1  20.3384  57.402  9.6047
## 1988F7  19.8712  56.162  8.0693
## 1988F5  30.6489  64.130 11.2628
## 1988F8  22.7770  59.330  9.0006
## 1988F6  23.2931  59.598  9.7188
## 1988F3  23.6971  56.425  7.6424
## 1988P1  17.3005  48.849  6.3624
## 1988P5  17.7038  51.272  6.8091
## 1988P4  24.0089  57.751 11.7447
## 1988P8  28.2496  62.980 10.9471
## 1988P7  27.4860  61.498 10.1778
## 1988P3  24.9390  56.325  8.3159
## 1988P2  36.6612  66.561 11.9161
## 1988P6 163.7029 104.973 17.9297
## 1989F6   8.5093  55.273  8.8561
## 1989F5   9.6691  51.267  7.2059
## 1989F4  11.2475  53.810  6.4866
## 1989F1  11.2511  56.626  6.0681
## 1989F2  11.2333  52.240  7.0164
## 1989F7  10.0714  51.378  5.5002
## 1989F8  10.6095  47.968  5.9609
## 1989F3  18.4196  66.124  9.2248
## 1989P7  15.4719  46.343  5.3939
## 1989P4  18.1775  57.180  8.4021
## 1989P6  20.4988  58.238 10.6135
## 1989P5       NA      NA      NA
## 1989P1  21.6840  59.693  9.9728
## 1989P3  22.2838  53.396  7.9006
## 1989P2  28.2970  67.175 12.5235
## 1989P8       NA      NA      NA
## 1990F2  19.4591  66.285 13.1572
## 1990F3  19.8679  58.278 12.7963
## 1990F4  27.4355  70.272 14.5602
## 1990F5  18.7195  51.276  7.7584
## 1990F1  19.7907  55.693  9.6170
## 1990F8  20.2904  55.549  7.7711
## 1990F7  19.8353  54.736  6.7922
## 1990F6  21.1971  54.562  9.2636
## 1990P8  18.5135  52.448  8.5810
## 1990P7  19.1608  54.802 10.8473
## 1990P3  19.1981  49.715  9.3223
## 1990P1  18.4484  47.917  6.6118
## 1990P6  17.6897  50.230  6.6269
## 1990P5  19.5449  51.150  7.2932
## 1990P2  25.7872  62.360 11.6569
## 1990P4  26.1289  61.199 10.9715
## 
## Degrees of freedom: 396 total; 258 residual
## Residual standard error: 1.0209
## Nonlinear mixed-effects model fit by maximum likelihood
##   Model: weight ~ SSlogis(Time, Asym, xmid, scal) 
##   Data: Soybean 
##   Log-likelihood: -739.84
##   Fixed: list(Asym ~ 1, xmid ~ 1, scal ~ 1) 
##    Asym    xmid    scal 
## 19.2530 55.0198  8.4033 
## 
## Random effects:
##  Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)
##  Level: Plot
##  Structure: General positive-definite, Log-Cholesky parametrization
##          StdDev Corr       
## Asym     5.2012 Asym  xmid 
## xmid     4.1974 0.721      
## scal     1.4047 0.711 0.958
## Residual 1.1235            
## 
## Number of Observations: 412
## Number of Groups: 48
## Warning in (function (model, data = sys.frame(sys.parent()),
## fixed, random, : Iteration 1, LME step: nlminb() did not converge
## (code = 1). Do increase 'msMaxIter'!
## Warning in (function (model, data = sys.frame(sys.parent()),
## fixed, random, : Iteration 6, LME step: nlminb() did not converge
## (code = 1). PORT message: false convergence (8)
##             Model df     AIC     BIC  logLik   Test L.Ratio
## fm1Soy.nlme     1 10 1499.67 1539.88 -739.84               
## fm2Soy.nlme     2 11  745.71  789.94 -361.86 1 vs 2  755.96
##             p-value
## fm1Soy.nlme        
## fm2Soy.nlme  <.0001

## Warning in (function (model, data = sys.frame(sys.parent()),
## fixed, random, : Iteration 1, LME step: nlminb() did not converge
## (code = 1). Do increase 'msMaxIter'!
## Warning in (function (model, data = sys.frame(sys.parent()),
## fixed, random, : Iteration 6, LME step: nlminb() did not converge
## (code = 1). PORT message: false convergence (8)
## Nonlinear mixed-effects model fit by maximum likelihood
##   Model: weight ~ SSlogis(Time, Asym, xmid, scal) 
##   Data: Soybean 
##   Log-likelihood: -326.01
##   Fixed: Asym + xmid + scal ~ Year 
## Asym.(Intercept)    Asym.Year1989    Asym.Year1990 
##         20.20758         -6.30311         -3.46519 
## xmid.(Intercept)    xmid.Year1989    xmid.Year1990 
##         54.09913         -2.48046         -4.84821 
## scal.(Intercept)    scal.Year1989    scal.Year1990 
##          8.05131         -0.93200         -0.66174 
## 
## Random effects:
##  Formula: list(Asym ~ 1, xmid ~ 1, scal ~ 1)
##  Level: Plot
##  Structure: General positive-definite, Log-Cholesky parametrization
##                  StdDev     Corr         
## Asym.(Intercept) 2.7111e+00 As.(I) xm.(I)
## xmid.(Intercept) 7.3512e-12 0.992        
## scal.(Intercept) 1.0788e-01 0.999  0.993 
## Residual         2.1626e-01              
## 
## Variance function:
##  Structure: Power of variance covariate
##  Formula: ~fitted(.) 
##  Parameter estimates:
##   power 
## 0.95011 
## Number of Observations: 412
## Number of Groups: 48
##                  numDF denDF F-value p-value
## Asym.(Intercept)     1   356  2057.4  <.0001
## Asym.Year            2   356   102.9  <.0001
## xmid.(Intercept)     1   356 11420.4  <.0001
## xmid.Year            2   356     9.4   1e-04
## scal.(Intercept)     1   356  7967.3  <.0001
## scal.Year            2   356    11.1  <.0001
## Nonlinear mixed-effects model fit by maximum likelihood
##   Model: weight ~ SSlogis(Time, Asym, xmid, scal) 
##  Data: Soybean 
##      AIC    BIC  logLik
##   616.31 680.65 -292.15
## 
## Random effects:
##  Formula: Asym ~ 1 | Plot
##         Asym.(Intercept) Residual
## StdDev:           1.0359  0.21803
## 
## Variance function:
##  Structure: Power of variance covariate
##  Formula: ~fitted(.) 
##  Parameter estimates:
##   power 
## 0.94262 
## Fixed effects: list(Asym ~ Year * Variety, xmid ~ Year + Variety, scal ~ Year) 
##                         Value Std.Error  DF t-value p-value
## Asym.(Intercept)       19.434   0.95374 352  20.377  0.0000
## Asym.Year1989          -8.842   1.07212 352  -8.247  0.0000
## Asym.Year1990          -3.707   1.17700 352  -3.150  0.0018
## Asym.VarietyP           1.623   1.03824 352   1.563  0.1189
## Asym.Year1989:VarietyP  5.571   1.17084 352   4.758  0.0000
## Asym.Year1990:VarietyP  0.147   1.17570 352   0.125  0.9004
## xmid.(Intercept)       54.815   0.75475 352  72.627  0.0000
## xmid.Year1989          -2.238   0.97170 352  -2.303  0.0218
## xmid.Year1990          -4.970   0.97425 352  -5.102  0.0000
## xmid.VarietyP          -1.297   0.41436 352  -3.131  0.0019
## scal.(Intercept)        8.063   0.14723 352  54.766  0.0000
## scal.Year1989          -0.895   0.20127 352  -4.448  0.0000
## scal.Year1990          -0.673   0.21217 352  -3.173  0.0016
##  Correlation: 
##                        As.(I) As.Y1989 As.Y1990 Asy.VP A.Y1989:
## Asym.Year1989          -0.831                                  
## Asym.Year1990          -0.736  0.646                           
## Asym.VarietyP          -0.532  0.374    0.304                  
## Asym.Year1989:VarietyP  0.339 -0.403   -0.249   -0.662         
## Asym.Year1990:VarietyP  0.318 -0.273   -0.447   -0.627  0.533  
## xmid.(Intercept)        0.729 -0.595   -0.523   -0.144  0.007  
## xmid.Year1989          -0.488  0.603    0.394   -0.021  0.133  
## xmid.Year1990          -0.489  0.433    0.661   -0.016  0.020  
## xmid.VarietyP          -0.337  0.127    0.052    0.572 -0.114  
## scal.(Intercept)        0.432 -0.381   -0.345    0.023 -0.029  
## scal.Year1989          -0.311  0.369    0.252   -0.025  0.090  
## scal.Year1990          -0.296  0.263    0.398   -0.023  0.022  
##                        A.Y1990: xm.(I) x.Y198 x.Y199 xmd.VP
## Asym.Year1989                                              
## Asym.Year1990                                              
## Asym.VarietyP                                              
## Asym.Year1989:VarietyP                                     
## Asym.Year1990:VarietyP                                     
## xmid.(Intercept)       -0.011                              
## xmid.Year1989           0.021   -0.705                     
## xmid.Year1990           0.054   -0.706  0.545              
## xmid.VarietyP          -0.057   -0.308  0.006  0.015       
## scal.(Intercept)       -0.031    0.817 -0.629 -0.628 -0.022
## scal.Year1989           0.023   -0.593  0.855  0.459  0.002
## scal.Year1990           0.048   -0.563  0.437  0.840  0.004
##                        sc.(I) s.Y198
## Asym.Year1989                       
## Asym.Year1990                       
## Asym.VarietyP                       
## Asym.Year1989:VarietyP              
## Asym.Year1990:VarietyP              
## xmid.(Intercept)                    
## xmid.Year1989                       
## xmid.Year1990                       
## xmid.VarietyP                       
## scal.(Intercept)                    
## scal.Year1989          -0.731       
## scal.Year1990          -0.694  0.507
## 
## Standardized Within-Group Residuals:
##      Min       Q1      Med       Q3      Max 
## -2.62787 -0.60802 -0.12370  0.56951  3.91853 
## 
## Number of Observations: 412
## Number of Groups: 48

## Nonlinear mixed-effects model fit by maximum likelihood
##   Model: conc ~ phenoModel(Subject, time, dose, lCl, lV) 
##   Data: Phenobarb 
##   Log-likelihood: -505.42
##   Fixed: lCl + lV ~ 1 
##      lCl       lV 
## -5.09324  0.34253 
## 
## Random effects:
##  Formula: list(lCl ~ 1, lV ~ 1)
##  Level: Subject
##  Structure: Diagonal
##             lCl      lV Residual
## StdDev: 0.44021 0.45044   2.7927
## 
## Number of Observations: 155
## Number of Groups: 59

##    user  system elapsed 
##   74.02    2.80   82.25