It calculates lambdas and coefficients for three-compartment model from K10, K12, K21, K13, and K31.

SolComp3(K10, K12, K21, K13, K31)

Arguments

K10

Ke, Elimination rate constant from central compartment

K12

Rate constant from the central to the first peripheral compartment

K21

Rate constant from the first peripheral to the central compartment

K13

Rate constant from the central to the second peripheral compartment

K31

Rate constant from the second peripheral to the central compartment

Details

It calculates lambdas and coefficients of two-compartment model from K10, K12, and K21. Lambdas should have no identical values.

Value

This returns a list of lambdas and coefficients.

Author

Kyun-Seop Bae <k@acr.kr>

Examples

DAT
#> TIME AMT RATE CMT DV #> 1 0 100 0 2 NA #> 2 1 NA NA NA NA #> 3 2 NA NA NA NA #> 4 4 NA NA NA NA #> 5 8 NA NA NA NA #> 6 12 NA NA NA NA #> 7 24 150 50 2 NA #> 8 25 NA NA NA NA #> 9 26 NA NA NA NA #> 10 28 NA NA NA NA #> 11 32 NA NA NA NA #> 12 36 NA NA NA NA #> 13 48 100 0 1 NA #> 14 49 NA NA NA NA #> 15 50 NA NA NA NA #> 16 52 NA NA NA NA #> 17 56 NA NA NA NA #> 18 60 NA NA NA NA
DAT2 = ExpandDH(DAT) Sol = SolComp3(K10=0.1, K12=3, K21=1, K13=2, K31=0.5) X3 = nComp(Sol, Ka=1, DAT2) X3
#> [,1] [,2] [,3] [,4] #> [1,] 0.000000e+00 0.000000 0.00000 0.00000 #> [2,] 0.000000e+00 13.004819 44.19187 40.02386 #> [3,] 0.000000e+00 12.205766 39.85761 43.90691 #> [4,] 0.000000e+00 11.604779 35.94874 46.04289 #> [5,] 0.000000e+00 10.954285 33.31609 44.82325 #> [6,] 0.000000e+00 10.422939 31.66063 42.73598 #> [7,] 0.000000e+00 8.993606 27.31648 36.88080 #> [8,] 0.000000e+00 22.781008 46.57865 51.99548 #> [9,] 0.000000e+00 28.923842 67.17024 72.67283 #> [10,] 0.000000e+00 34.824944 86.10027 94.65280 #> [11,] 0.000000e+00 26.682954 84.48999 101.57568 #> [12,] 0.000000e+00 24.912956 75.89143 101.67155 #> [13,] 0.000000e+00 23.688228 71.96288 97.10912 #> [14,] 0.000000e+00 20.438779 62.07916 83.81492 #> [15,] 3.678794e+01 34.919791 87.37083 103.91654 #> [16,] 1.353353e+01 33.228471 96.38124 116.45056 #> [17,] 1.831564e+00 31.441383 95.92774 123.94904 #> [18,] 3.354626e-02 29.630545 90.10716 121.19273 #> [19,] 6.144212e-04 28.190201 85.63118 115.58182
matplot(DAT2[, "TIME"], X3, type="l")